Tighter Bounds for Graph Steiner Tree Approximation

نویسندگان

  • Gabriel Robins
  • Alex Zelikovsky
چکیده

The classical Steiner tree problem in weighted graphs seeks a minimum weight connected subgraph containing a given subset of the vertices (terminals). We present a new polynomialtime heuristic that achieves a best-known approximation ratio of 1 + ln 3 2 ≈ 1.55 for general graphs, and best-known approximation ratios of ≈ 1.28 for quasi-bipartite graphs (i.e., where no two non-terminals are adjacent) and for complete graphs with edge weights 1 and 2. Our method is considerably simpler and easier to implement than previous approaches. We also prove the first known non-trivial performance bound (1.5 · OPT) for the Iterated 1-Steiner heuristic of Kahng and Robins in quasi-bipartite graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Steiner diameter of a graph

‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $...

متن کامل

Lower Bounds for Approximation Algorithms for the Steiner Tree Problem

The Steiner tree problem asks for a shortest subgraph connecting a given set of terminals in a graph. It is known to be APX-complete, which means that no polynomial time approximation scheme can exist for this problem, unless P=NP. Currently, the best approximation algorithm for the Steiner tree problem has a performance ratio of + , , whereas the corresponding lower bound is smaller than + , ....

متن کامل

Nordhaus-Gaddum type results for the Harary index of graphs

The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...

متن کامل

Bounds on the quality of approximate solutions to the Group Steiner Problem

The Group Steiner Problem (GSP) is a generalized version of the well known Steiner Problem. For an undirected, connected distance graph with groups of required vertices and Steiner vertices, GSP asks for a shortest connected subgraph, containing at least one vertex of each group. As the Steiner Problem is NP-hard, GSP is too, and we are interested in approximation algorithms. EEcient approximat...

متن کامل

Lower bounds for the relative greedy algorithm for approximating Steiner trees

The Steiner tree problem is to find a shortest subgraph that spans a given set of vertices in a graph. This problem is known to be NP-hard and it is well known that a polynomial time 2-approximation algorithm exists. In 1996 Zelikovsky [11] suggested an approximation algorithm for the Steiner tree problem that is called the relative greedy algorithm. Till today the performance ratio of this alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2005